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Photolysis of Organopolysilanes. A Novel Addition
Reaction of Aryl Substituted Disilanes to Olefins
Sir:

There has been a considerable interest recently con-
cerning the photolysis of organopolysilanes.! This paper is
concerned with a novel photochemical addition involving
arylpentamethyldisilanes and olefins.

When a solution of phenylpentamethyldisilane (1) (4.80
mmol) and trimethylvinylsilane (2a) (0.20 mol) in 110 ml
of dry benzene was irradiated at 0° for 4 hr with a low pres-
sure mercury lamp bearing a Vycor filter under a nitrogen
atmosphere, 80% of 1 reacted to give o-(trimethylsilyl)(s3-
trimethylsilylethyl)dimethylsilylbenzene (3a) in 49% yield
(based on unrecovered 1).2

SiMe,SiMe, R!

g ' hy
Q/ + CH._,=C< -~
R?
1 2a, R' = H; R = SiMe,
b. Rl = R* = Me
¢, Rl = Me; R? = C(Me)=CH,
Rl
SiM92CH._,CH/
N
Qs
SiMe,
3a, R' = H; R? = SiMe, (49%)°
b, R! =R = Me (59%)
c¢. R'= Me; R = C(Me)==CH, (70%)

The NMR spectrum of 3a showed proton absorptions at §
—0.07 (CH3-SiMe,, s, 9 H), 0.28 (CH3-SiMe, s, 6 H),
0.31 (CH;3-SiMe,CgHy, s, 9 H), 0.43-0.61 (CH2CH», m, 4
H), and 7.40-7.56 (ring protons, m, 4 H). The mass spec-
trum of 3a showed peaks for C¢H4(SiMe3)(SiMex™?) at m/e
207 (49.3%) and for C;oH,sSiz* at 191 (48.9%) as well as a
peak at 308 corresponding to the molecular ion. Further
support for the structure of the adduct comes from the reac-
tion of 3a with chlorine in carbon tetrachloride at room
temperature, which gave known o-(trimethylsilyl)chloro-
benzene (4)*> (21%) and a new compound (17%) identified
as o-(f3-trimethylsilylethyl)chlorobenzene (5) by ir, NMR,
and mass spectroscopic studies.® No other isomers such as
m- or p-silyl-substituted chlorobenzene were detected by
GLC analysis of the reaction mixture.’

SiMe,
SN eaive

Compound 1 also reacted with isobutylene (2b) and 2,3-
dimethylbutadiene (2¢) under similar conditions to give ad-

SlMeZCH .CH.SiMe,
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ducts 3b and 3¢, respectively. These were characterized by
NMR and mass spectroscopic studies.??°

CH;,—O-SiMegsiMea + CH—=CMe, ~»

2b
6 ,
H? SiMe,

CH, SiMe,CH,CHMe,

H® H¢
7

Photolysis of p-tolylpentamethyldisilane (6) in the pres-
ence of isobutylene afforded crucial evidence for the migra-
tion of the trimethylsilyl group from silicon to the ortho car-
bon in the aromatic ring. Thus 2-trimethyisilyl-4-methyliso-
butyldimethylsilylbenzene (7)'° was obtained in 58% yield
as a single product.

The NMR spectrum of the phenyl ring protons in 7
clearly indicates that it must have the 1,2,4-trisubstituted
benzene structure. Thus H3 (8 7.36,s) and H® (6 7.03, d, J
= 7.6 Hz) protons showed broadening due to long-range
coupling with the methyl and H? or H? protons, while the
H® proton occurred at § 7.45 (J = 7.6 Hz) as a sharp dou-
blet. Protodesilylation of 7 by dry hydrogen chloride in
ethyl ether gave m-(trimethylsilyl)toluene (8)'' (17%) and
p-(isobutyldimethylsilyl)toluene (9)'2 (5%) as monodesily-
lated products. Again, no other isomers were detected by
GLC analysis.

Recently, Sommer and his coworkers have reported that
in the photolysis of pentaphenylmethyldisilane Ph,Si=CH,
or its close equivalent, diradical species Ph,Si-CH, is
formed with loss of triphenylsilane.!' The production of our
adducts can best be explained in terms of photoisomeriza-
tion of arylpentamethyldisilane to an unstable intermediate
having the silicon-carbon double bond, followed by addition
of this intermediate to the olefin or diene as shown
below,!314

SiMe,SiMe, SiMe,
. * | cu=crr:
SiMe,

Me,

Me, 5

Si . I
e, - |-

Mo, CR'E SiMe, "CRIR:

Si
T~cH

[
SiMe, HCR'R:
3

The photolysis of various disilane derivatives in the pres-
ence of unsaturated compounds is currently being examined
and will be reported elsewhere.
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CH,~=CR,
O - ==
SiMe,

SiMe, SiMe,
3

Photolysis of p-CHaCeH4SiMe,SiMeoH in the presence of 2,3-dimethyl-
butadiene under the same conditions gave compound 10 in 54% yield
as a single product. If hydrosilylation reaction were involved leading to
the observed products, compound 11 also shouid be formed. However,
no evidence for the formation of 11 was obtained.

(2

-

(7

-

8

-

SiMe,CH,

Scnc? o

VRN
CH, SiMe,HMe Me

10
SiMe,HMe,

NG

CHC\
CH, - Me

SiMe,CH,
1
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Coordination of Myoglobin Active Site Models in
Aqueous Solution as Studied by Kinetic Methods!

Sir:
The covalent attachment of the “proximal” base to sim-
ple hemes,2-% as in 1, has made possible studies of both

equilibria®?-d and kinetics*®f of reversible heme oxygen-
ation. Although some of the qualitative aspects of reversible

C # -
cH,~ \C/N\Fe >CH
HC\/C v \/N?— C—CH
7 | = )
_C —CH=™
CH, ™~ /C l
/ /C CH,
CH, i
Compound A base
H
1 -H -NCH,CH,CH,N" N
e/
H
I
2 -CH,CH,COCH, -NCH,CH,CH,N"NN
\—/
OH H
3 -CHCH,CNCHCH,CHN"NN  -NCH,CH,CHN"NN
—/ \/
—OCH._,CH._)CH;,@
4 -CH,CH,COCH, N
I
5 —CHZCHzCOCH._,CH2CH._,@ —OCHchZCHg—@j
N N

oxygenatin of 1 and 2 have been duplicated with simple
heme-base mixtures,’-® quantitative equilibria and kinetic
studies of such mixtures have met with limited success*:10
due to the interference of the competing external bases.'!

Because our ““isolated site” models 1 and 2 showed oxy-
genation kinetics and equilibria at 20° in water similar to
those of myoglobin,* and because 3 also binds oxygen re-
versibly in solution, it seemed interesting to investigate the
coordination of 2 and 3 in aqueous solution. We report evi-
dence that 2 is present in aqueous solution a/most entirely
as the five-coordinate species shown, whereas 3 exists as a
mixture of five- and six-coordinate species in water.

We have previously reported that 1, 2, and 4 react with
carbon monoxide as rapidly in water as in anhydrous sol-
vents.*4f This is evidence that, even in aqueous solution,
water is not coordinated to the iron in 1 or 4 at room tem-
perature (K is small) (eq 1). However, as the temperature

base ll)ase
—Fe' 4 HO == — el 0
H,0

of solutions of 1 or 2 in methanol-water or wet methylene
chloride is lowered to <0° the broad band at 530 nm splits
in o, bands,*® typical of hexacoordinate hemes (esss/esas
= 1.5 at —60°C in filtered wet methylene chloride). This
indicates that K; becomes significant at low tempera-
tures,'S

Because there is still some disagreement concerning un-
equivocal correlations of visible spectra with axial ligation
in hemes,’3® we have developed an alternative kinetic meth-
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